Source code for espnet.nets.pytorch_backend.transformer.encoder_layer

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Encoder self-attention layer definition."""

import torch
from torch import nn

from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm


[docs]class EncoderLayer(nn.Module): """Encoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): Whether to use layer_norm before the first block. concat_after (bool): Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) stochastic_depth_rate (float): Proability to skip this layer. During training, the layer may skip residual computation and return input as-is with given probability. """ def __init__( self, size, self_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False, stochastic_depth_rate=0.0, ): """Construct an EncoderLayer object.""" super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.norm1 = LayerNorm(size) self.norm2 = LayerNorm(size) self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before self.concat_after = concat_after if self.concat_after: self.concat_linear = nn.Linear(size + size, size) self.stochastic_depth_rate = stochastic_depth_rate
[docs] def forward(self, x, mask, cache=None): """Compute encoded features. Args: x_input (torch.Tensor): Input tensor (#batch, time, size). mask (torch.Tensor): Mask tensor for the input (#batch, 1, time). cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, 1, time). """ skip_layer = False # with stochastic depth, residual connection `x + f(x)` becomes # `x <- x + 1 / (1 - p) * f(x)` at training time. stoch_layer_coeff = 1.0 if self.training and self.stochastic_depth_rate > 0: skip_layer = torch.rand(1).item() < self.stochastic_depth_rate stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) if skip_layer: if cache is not None: x = torch.cat([cache, x], dim=1) return x, mask residual = x if self.normalize_before: x = self.norm1(x) if cache is None: x_q = x else: assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) x_q = x[:, -1:, :] residual = residual[:, -1:, :] mask = None if mask is None else mask[:, -1:, :] if self.concat_after: x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1) x = residual + stoch_layer_coeff * self.concat_linear(x_concat) else: x = residual + stoch_layer_coeff * self.dropout( self.self_attn(x_q, x, x, mask) ) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm2(x) if cache is not None: x = torch.cat([cache, x], dim=1) return x, mask