Source code for espnet2.bin.mt_inference

#!/usr/bin/env python3
import argparse
import logging
import sys
from pathlib import Path
from typing import Any, List, Optional, Sequence, Tuple, Union

import numpy as np
import torch
from typeguard import typechecked

from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.lm import LMTask
from import MTTask
from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.nets.batch_beam_search import BatchBeamSearch
from espnet.nets.beam_search import BeamSearch, Hypothesis
from espnet.nets.pytorch_backend.transformer.subsampling import TooShortUttError
from espnet.nets.scorer_interface import BatchScorerInterface
from espnet.nets.scorers.ctc import CTCPrefixScorer
from espnet.nets.scorers.length_bonus import LengthBonus
from espnet.utils.cli_utils import get_commandline_args

[docs]class Text2Text: """Text2Text class Examples: >>> text2text = Text2Text("mt_config.yml", "mt.pth") >>> text2text(audio) [(text, token, token_int, hypothesis object), ...] """ @typechecked def __init__( self, mt_train_config: Union[Path, str, None] = None, mt_model_file: Union[Path, str, None] = None, lm_train_config: Union[Path, str, None] = None, lm_file: Union[Path, str, None] = None, ngram_scorer: str = "full", ngram_file: Union[Path, str, None] = None, token_type: Optional[str] = None, bpemodel: Optional[str] = None, device: str = "cpu", maxlenratio: float = 0.0, minlenratio: float = 0.0, batch_size: int = 1, dtype: str = "float32", beam_size: int = 20, ctc_weight: float = 0.5, lm_weight: float = 1.0, ngram_weight: float = 0.9, penalty: float = 0.0, nbest: int = 1, normalize_length: bool = False, ): # 1. Build MT model scorers = {} mt_model, mt_train_args = MTTask.build_model_from_file( mt_train_config, mt_model_file, device ), dtype)).eval() decoder = mt_model.decoder ctc = ( CTCPrefixScorer(ctc=mt_model.ctc, eos=mt_model.eos) if ctc_weight != 0.0 else None ) token_list = mt_model.token_list scorers.update( decoder=decoder, ctc=ctc, length_bonus=LengthBonus(len(token_list)), ) # 2. Build Language model if lm_train_config is not None: lm, lm_train_args = LMTask.build_model_from_file( lm_train_config, lm_file, device ) scorers["lm"] = lm.lm # 3. Build ngram model if ngram_file is not None: if ngram_scorer == "full": from espnet.nets.scorers.ngram import NgramFullScorer ngram = NgramFullScorer(ngram_file, token_list) else: from espnet.nets.scorers.ngram import NgramPartScorer ngram = NgramPartScorer(ngram_file, token_list) else: ngram = None scorers["ngram"] = ngram # 4. Build BeamSearch object weights = dict( decoder=1.0 - ctc_weight, ctc=ctc_weight, lm=lm_weight, ngram=ngram_weight, length_bonus=penalty, ) beam_search = BeamSearch( beam_size=beam_size, weights=weights, scorers=scorers, sos=mt_model.sos, eos=mt_model.eos, vocab_size=len(token_list), token_list=token_list, pre_beam_score_key=None if ctc_weight == 1.0 else "full", normalize_length=normalize_length, ) # TODO(karita): make all scorers batchfied if batch_size == 1: non_batch = [ k for k, v in beam_search.full_scorers.items() if not isinstance(v, BatchScorerInterface) ] if len(non_batch) == 0: beam_search.__class__ = BatchBeamSearch"BatchBeamSearch implementation is selected.") else: logging.warning( f"As non-batch scorers {non_batch} are found, " f"fall back to non-batch implementation." ), dtype=getattr(torch, dtype)).eval() for scorer in scorers.values(): if isinstance(scorer, torch.nn.Module):, dtype=getattr(torch, dtype)).eval()"Beam_search: {beam_search}")"Decoding device={device}, dtype={dtype}") # 4. [Optional] Build Text converter: e.g. bpe-sym -> Text if token_type is None: token_type = mt_train_args.token_type if bpemodel is None: bpemodel = mt_train_args.bpemodel if token_type is None: tokenizer = None elif token_type == "bpe": if bpemodel is not None: tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel) else: tokenizer = None else: tokenizer = build_tokenizer(token_type=token_type) converter = TokenIDConverter(token_list=token_list)"Text tokenizer: {tokenizer}") self.mt_model = mt_model self.mt_train_args = mt_train_args self.converter = converter self.tokenizer = tokenizer self.beam_search = beam_search self.maxlenratio = maxlenratio self.minlenratio = minlenratio self.device = device self.dtype = dtype self.nbest = nbest @torch.no_grad() @typechecked def __call__( self, src_text: Union[torch.Tensor, np.ndarray] ) -> List[Tuple[Optional[str], List[str], List[int], Hypothesis]]: """Inference Args: data: Input text data Returns: text, token, token_int, hyp """ # Input as audio signal if isinstance(src_text, np.ndarray): src_text = torch.tensor(src_text) # data: (Nsamples,) -> (1, Nsamples) src_text = src_text.unsqueeze(0).to(torch.long) # lengths: (1,) lengths = src_text.new_full([1], dtype=torch.long, fill_value=src_text.size(1)) batch = {"src_text": src_text, "src_text_lengths": lengths} # a. To device batch = to_device(batch, device=self.device) # b. Forward Encoder enc, _ = self.mt_model.encode(**batch) # self-condition case if isinstance(enc, tuple): enc = enc[0] assert len(enc) == 1, len(enc) # c. Passed the encoder result and the beam search nbest_hyps = self.beam_search( x=enc[0], maxlenratio=self.maxlenratio, minlenratio=self.minlenratio ) nbest_hyps = nbest_hyps[: self.nbest] results = [] for hyp in nbest_hyps: assert isinstance(hyp, Hypothesis), type(hyp) # remove sos/eos and get results # token_int = hyp.yseq[1:-1].tolist() # TODO(sdalmia): check why the above line doesn't work token_int = hyp.yseq.tolist() token_int = list(filter(lambda x: x != self.mt_model.sos, token_int)) token_int = list(filter(lambda x: x != self.mt_model.eos, token_int)) # remove blank symbol id, which is assumed to be 0 token_int = list(filter(lambda x: x != 0, token_int)) # Change integer-ids to tokens token = self.converter.ids2tokens(token_int) if self.tokenizer is not None: text = self.tokenizer.tokens2text(token) else: text = None results.append((text, token, token_int, hyp)) return results
[docs] @staticmethod def from_pretrained( model_tag: Optional[str] = None, **kwargs: Optional[Any], ): """Build Text2Text instance from the pretrained model. Args: model_tag (Optional[str]): Model tag of the pretrained models. Currently, the tags of espnet_model_zoo are supported. Returns: Text2Text: Text2Text instance. """ if model_tag is not None: try: from espnet_model_zoo.downloader import ModelDownloader except ImportError: logging.error( "`espnet_model_zoo` is not installed. " "Please install via `pip install -U espnet_model_zoo`." ) raise d = ModelDownloader() kwargs.update(**d.download_and_unpack(model_tag)) return Text2Text(**kwargs)
[docs]@typechecked def inference( output_dir: str, maxlenratio: float, minlenratio: float, batch_size: int, dtype: str, beam_size: int, ngpu: int, seed: int, ctc_weight: float, lm_weight: float, ngram_weight: float, penalty: float, nbest: int, normalize_length: bool, num_workers: int, log_level: Union[int, str], data_path_and_name_and_type: Sequence[Tuple[str, str, str]], key_file: Optional[str], mt_train_config: Optional[str], mt_model_file: Optional[str], lm_train_config: Optional[str], lm_file: Optional[str], word_lm_train_config: Optional[str], word_lm_file: Optional[str], ngram_file: Optional[str], model_tag: Optional[str], token_type: Optional[str], bpemodel: Optional[str], allow_variable_data_keys: bool, ): if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") if word_lm_train_config is not None: raise NotImplementedError("Word LM is not implemented") if ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) if ngpu >= 1: device = "cuda" else: device = "cpu" # 1. Set random-seed set_all_random_seed(seed) # 2. Build text2text text2text_kwargs = dict( mt_train_config=mt_train_config, mt_model_file=mt_model_file, lm_train_config=lm_train_config, lm_file=lm_file, ngram_file=ngram_file, token_type=token_type, bpemodel=bpemodel, device=device, maxlenratio=maxlenratio, minlenratio=minlenratio, dtype=dtype, beam_size=beam_size, ctc_weight=ctc_weight, lm_weight=lm_weight, ngram_weight=ngram_weight, penalty=penalty, nbest=nbest, normalize_length=normalize_length, ) text2text = Text2Text.from_pretrained( model_tag=model_tag, **text2text_kwargs, ) # 3. Build data-iterator loader = MTTask.build_streaming_iterator( data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, preprocess_fn=MTTask.build_preprocess_fn(text2text.mt_train_args, False), collate_fn=MTTask.build_collate_fn(text2text.mt_train_args, False), allow_variable_data_keys=allow_variable_data_keys, inference=True, ) # 7 .Start for-loop # FIXME(kamo): The output format should be discussed about with DatadirWriter(output_dir) as writer: for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")} # N-best list of (text, token, token_int, hyp_object) try: results = text2text(**batch) except TooShortUttError as e: logging.warning(f"Utterance {keys} {e}") hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[]) results = [[" ", ["<space>"], [2], hyp]] * nbest # Only supporting batch_size==1 key = keys[0] for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results): # Create a directory: outdir/{n}best_recog ibest_writer = writer[f"{n}best_recog"] # Write the result to each file ibest_writer["token"][key] = " ".join(token) ibest_writer["token_int"][key] = " ".join(map(str, token_int)) ibest_writer["score"][key] = str(hyp.score) if text is not None: ibest_writer["text"][key] = text
[docs]def get_parser(): parser = config_argparse.ArgumentParser( description="MT Decoding", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=True) parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--num_workers", type=int, default=1, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=True, action="append", ) group.add_argument("--key_file", type=str_or_none) group.add_argument("--allow_variable_data_keys", type=str2bool, default=False) group = parser.add_argument_group("The model configuration related") group.add_argument( "--mt_train_config", type=str, help="ST training configuration", ) group.add_argument( "--mt_model_file", type=str, help="MT model parameter file", ) group.add_argument( "--lm_train_config", type=str, help="LM training configuration", ) group.add_argument( "--lm_file", type=str, help="LM parameter file", ) group.add_argument( "--word_lm_train_config", type=str, help="Word LM training configuration", ) group.add_argument( "--word_lm_file", type=str, help="Word LM parameter file", ) group.add_argument( "--ngram_file", type=str, help="N-gram parameter file", ) group.add_argument( "--model_tag", type=str, help="Pretrained model tag. If specify this option, *_train_config and " "*_file will be overwritten", ) group = parser.add_argument_group("Beam-search related") group.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses") group.add_argument("--beam_size", type=int, default=20, help="Beam size") group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty") group.add_argument( "--maxlenratio", type=float, default=0.0, help="Input length ratio to obtain max output length. " "If maxlenratio=0.0 (default), it uses a end-detect " "function " "to automatically find maximum hypothesis lengths." "If maxlenratio<0.0, its absolute value is interpreted" "as a constant max output length", ) group.add_argument( "--minlenratio", type=float, default=0.0, help="Input length ratio to obtain min output length", ) group.add_argument( "--ctc_weight", type=float, default=0.0, help="CTC weight in joint decoding", ) group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight") group.add_argument("--ngram_weight", type=float, default=0.9, help="ngram weight") group = parser.add_argument_group("Text converter related") group.add_argument( "--token_type", type=str_or_none, default=None, choices=["char", "bpe", None], help="The token type for ST model. " "If not given, refers from the training args", ) group.add_argument( "--bpemodel", type=str_or_none, default=None, help="The model path of sentencepiece. " "If not given, refers from the training args", ) group.add_argument( "--normalize_length", type=str2bool, default=False, help="If true, pruning is based on length-normalized scores", ) return parser
[docs]def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) inference(**kwargs)
if __name__ == "__main__": main()