Source code for espnet2.gan_tts.jets.alignments

# Copyright 2022 Dan Lim
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from numba import jit
from scipy.stats import betabinom


[docs]class AlignmentModule(nn.Module): """Alignment Learning Framework proposed for parallel TTS models in: https://arxiv.org/abs/2108.10447 """ def __init__(self, adim, odim, cache_prior=True): """Initialize AlignmentModule. Args: adim (int): Dimension of attention. odim (int): Dimension of feats. cache_prior (bool): Whether to cache beta-binomial prior. """ super().__init__() self.cache_prior = cache_prior self._cache = {} self.t_conv1 = nn.Conv1d(adim, adim, kernel_size=3, padding=1) self.t_conv2 = nn.Conv1d(adim, adim, kernel_size=1, padding=0) self.f_conv1 = nn.Conv1d(odim, adim, kernel_size=3, padding=1) self.f_conv2 = nn.Conv1d(adim, adim, kernel_size=3, padding=1) self.f_conv3 = nn.Conv1d(adim, adim, kernel_size=1, padding=0)
[docs] def forward(self, text, feats, text_lengths, feats_lengths, x_masks=None): """Calculate alignment loss. Args: text (Tensor): Batched text embedding (B, T_text, adim). feats (Tensor): Batched acoustic feature (B, T_feats, odim). text_lengths (Tensor): Text length tensor (B,). feats_lengths (Tensor): Feature length tensor (B,). x_masks (Tensor): Mask tensor (B, T_text). Returns: Tensor: Log probability of attention matrix (B, T_feats, T_text). """ text = text.transpose(1, 2) text = F.relu(self.t_conv1(text)) text = self.t_conv2(text) text = text.transpose(1, 2) feats = feats.transpose(1, 2) feats = F.relu(self.f_conv1(feats)) feats = F.relu(self.f_conv2(feats)) feats = self.f_conv3(feats) feats = feats.transpose(1, 2) dist = feats.unsqueeze(2) - text.unsqueeze(1) dist = torch.norm(dist, p=2, dim=3) score = -dist if x_masks is not None: x_masks = x_masks.unsqueeze(-2) score = score.masked_fill(x_masks, -np.inf) log_p_attn = F.log_softmax(score, dim=-1) # add beta-binomial prior bb_prior = self._generate_prior( text_lengths, feats_lengths, ).to(dtype=log_p_attn.dtype, device=log_p_attn.device) log_p_attn = log_p_attn + bb_prior return log_p_attn
def _generate_prior(self, text_lengths, feats_lengths, w=1) -> torch.Tensor: """Generate alignment prior formulated as beta-binomial distribution Args: text_lengths (Tensor): Batch of the lengths of each input (B,). feats_lengths (Tensor): Batch of the lengths of each target (B,). w (float): Scaling factor; lower -> wider the width. Returns: Tensor: Batched 2d static prior matrix (B, T_feats, T_text). """ B = len(text_lengths) T_text = text_lengths.max() T_feats = feats_lengths.max() bb_prior = torch.full((B, T_feats, T_text), fill_value=-np.inf) for bidx in range(B): T = feats_lengths[bidx].item() N = text_lengths[bidx].item() key = str(T) + "," + str(N) if self.cache_prior and key in self._cache: prob = self._cache[key] else: alpha = w * np.arange(1, T + 1, dtype=float) # (T,) beta = w * np.array([T - t + 1 for t in alpha]) k = np.arange(N) batched_k = k[..., None] # (N,1) prob = betabinom.logpmf(batched_k, N, alpha, beta) # (N,T) # store cache if self.cache_prior and key not in self._cache: self._cache[key] = prob prob = torch.from_numpy(prob).transpose(0, 1) # -> (T,N) bb_prior[bidx, :T, :N] = prob return bb_prior
@jit(nopython=True) def _monotonic_alignment_search(log_p_attn): # https://arxiv.org/abs/2005.11129 T_mel = log_p_attn.shape[0] T_inp = log_p_attn.shape[1] Q = np.full((T_inp, T_mel), fill_value=-np.inf) log_prob = log_p_attn.transpose(1, 0) # -> (T_inp,T_mel) # 1. Q <- init first row for all j for j in range(T_mel): Q[0, j] = log_prob[0, : j + 1].sum() # 2. for j in range(1, T_mel): for i in range(1, min(j + 1, T_inp)): Q[i, j] = max(Q[i - 1, j - 1], Q[i, j - 1]) + log_prob[i, j] # 3. A = np.full((T_mel,), fill_value=T_inp - 1) for j in range(T_mel - 2, -1, -1): # T_mel-2, ..., 0 # 'i' in {A[j+1]-1, A[j+1]} i_a = A[j + 1] - 1 i_b = A[j + 1] if i_b == 0: argmax_i = 0 elif Q[i_a, j] >= Q[i_b, j]: argmax_i = i_a else: argmax_i = i_b A[j] = argmax_i return A
[docs]def viterbi_decode(log_p_attn, text_lengths, feats_lengths): """Extract duration from an attention probability matrix Args: log_p_attn (Tensor): Batched log probability of attention matrix (B, T_feats, T_text). text_lengths (Tensor): Text length tensor (B,). feats_legnths (Tensor): Feature length tensor (B,). Returns: Tensor: Batched token duration extracted from `log_p_attn` (B, T_text). Tensor: Binarization loss tensor (). """ B = log_p_attn.size(0) T_text = log_p_attn.size(2) device = log_p_attn.device bin_loss = 0 ds = torch.zeros((B, T_text), device=device) for b in range(B): cur_log_p_attn = log_p_attn[b, : feats_lengths[b], : text_lengths[b]] viterbi = _monotonic_alignment_search(cur_log_p_attn.detach().cpu().numpy()) _ds = np.bincount(viterbi) ds[b, : len(_ds)] = torch.from_numpy(_ds).to(device) t_idx = torch.arange(feats_lengths[b]) bin_loss = bin_loss - cur_log_p_attn[t_idx, viterbi].mean() bin_loss = bin_loss / B return ds, bin_loss
@jit(nopython=True) def _average_by_duration(ds, xs, text_lengths, feats_lengths): B = ds.shape[0] xs_avg = np.zeros_like(ds) ds = ds.astype(np.int32) for b in range(B): t_text = text_lengths[b] t_feats = feats_lengths[b] d = ds[b, :t_text] d_cumsum = d.cumsum() d_cumsum = [0] + list(d_cumsum) x = xs[b, :t_feats] for n, (start, end) in enumerate(zip(d_cumsum[:-1], d_cumsum[1:])): if len(x[start:end]) != 0: xs_avg[b, n] = x[start:end].mean() else: xs_avg[b, n] = 0 return xs_avg
[docs]def average_by_duration(ds, xs, text_lengths, feats_lengths): """Average frame-level features into token-level according to durations Args: ds (Tensor): Batched token duration (B, T_text). xs (Tensor): Batched feature sequences to be averaged (B, T_feats). text_lengths (Tensor): Text length tensor (B,). feats_lengths (Tensor): Feature length tensor (B,). Returns: Tensor: Batched feature averaged according to the token duration (B, T_text). """ device = ds.device args = [ds, xs, text_lengths, feats_lengths] args = [arg.detach().cpu().numpy() for arg in args] xs_avg = _average_by_duration(*args) xs_avg = torch.from_numpy(xs_avg).to(device) return xs_avg