espnet2.asr.encoder.longformer_encoder.LongformerEncoder
espnet2.asr.encoder.longformer_encoder.LongformerEncoder
class espnet2.asr.encoder.longformer_encoder.LongformerEncoder(input_size: int, output_size: int = 256, attention_heads: int = 4, linear_units: int = 2048, num_blocks: int = 6, dropout_rate: float = 0.1, positional_dropout_rate: float = 0.1, attention_dropout_rate: float = 0.0, input_layer: str = 'conv2d', normalize_before: bool = True, concat_after: bool = False, positionwise_layer_type: str = 'linear', positionwise_conv_kernel_size: int = 3, macaron_style: bool = False, rel_pos_type: str = 'legacy', pos_enc_layer_type: str = 'abs_pos', selfattention_layer_type: str = 'lf_selfattn', activation_type: str = 'swish', use_cnn_module: bool = True, zero_triu: bool = False, cnn_module_kernel: int = 31, padding_idx: int = -1, interctc_layer_idx: List[int] = [], interctc_use_conditioning: bool = False, attention_windows: list = [100, 100, 100, 100, 100, 100], attention_dilation: list = [1, 1, 1, 1, 1, 1], attention_mode: str = 'sliding_chunks')
Bases: ConformerEncoder
Longformer SA Conformer encoder module.
- Parameters:
- input_size (int) – Input dimension.
- output_size (int) – Dimension of attention.
- attention_heads (int) – The number of heads of multi head attention.
- linear_units (int) – The number of units of position-wise feed forward.
- num_blocks (int) – The number of decoder blocks.
- dropout_rate (float) – Dropout rate.
- attention_dropout_rate (float) – Dropout rate in attention.
- positional_dropout_rate (float) – Dropout rate after adding positional encoding.
- input_layer (Union *[*str , torch.nn.Module ]) – Input layer type.
- normalize_before (bool) – Whether to use layer_norm before the first block.
- concat_after (bool) – Whether to concat attention layer’s input and output. If True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) If False, no additional linear will be applied. i.e. x -> x + att(x)
- positionwise_layer_type (str) – “linear”, “conv1d”, or “conv1d-linear”.
- positionwise_conv_kernel_size (int) – Kernel size of positionwise conv1d layer.
- rel_pos_type (str) – Whether to use the latest relative positional encoding or the legacy one. The legacy relative positional encoding will be deprecated in the future. More Details can be found in https://github.com/espnet/espnet/pull/2816.
- encoder_pos_enc_layer_type (str) – Encoder positional encoding layer type.
- encoder_attn_layer_type (str) – Encoder attention layer type.
- activation_type (str) – Encoder activation function type.
- macaron_style (bool) – Whether to use macaron style for positionwise layer.
- use_cnn_module (bool) – Whether to use convolution module.
- zero_triu (bool) – Whether to zero the upper triangular part of attention matrix.
- cnn_module_kernel (int) – Kernerl size of convolution module.
- padding_idx (int) – Padding idx for input_layer=embed.
- attention_windows (list) – Layer-wise attention window sizes for longformer self-attn
- attention_dilation (list) – Layer-wise attention dilation sizes for longformer self-attn
- attention_mode (str) – Implementation for longformer self-attn. Default=”sliding_chunks” Choose ‘n2’, ‘tvm’ or ‘sliding_chunks’. More details in https://github.com/allenai/longformer
Initializes internal Module state, shared by both nn.Module and ScriptModule.
forward(xs_pad: Tensor, ilens: Tensor, prev_states: Tensor | None = None, ctc: CTC | None = None, return_all_hs: bool = False) → Tuple[Tensor, Tensor, Tensor | None]
Calculate forward propagation.
- Parameters:
- xs_pad (torch.Tensor) – Input tensor (#batch, L, input_size).
- ilens (torch.Tensor) – Input length (#batch).
- prev_states (torch.Tensor) – Not to be used now.
- ctc (CTC) – ctc module for intermediate CTC loss
- return_all_hs (bool) – whether to return all hidden states
- Returns: Output tensor (#batch, L, output_size). torch.Tensor: Output length (#batch). torch.Tensor: Not to be used now.
- Return type: torch.Tensor
output_size() → int