espnet2.train.trainer.TrainerOptions
espnet2.train.trainer.TrainerOptions
class espnet2.train.trainer.TrainerOptions(ngpu: int, resume: bool, use_amp: bool, train_dtype: str, grad_noise: bool, accum_grad: int, grad_clip: float, grad_clip_type: float, log_interval: int | None, no_forward_run: bool, use_matplotlib: bool, use_tensorboard: bool, use_wandb: bool, adapter: str, use_adapter: bool, save_strategy: str, output_dir: pathlib.Path | str, max_epoch: int, seed: int, sharded_ddp: bool, patience: int | None, keep_nbest_models: int | List[int], nbest_averaging_interval: int, early_stopping_criterion: Sequence[str], best_model_criterion: Sequence[Sequence[str]], val_scheduler_criterion: Sequence[str], unused_parameters: bool, wandb_model_log_interval: int, create_graph_in_tensorboard: bool)
Bases: object
accum_grad : int
adapter : str
best_model_criterion : Sequence[Sequence[str]]
create_graph_in_tensorboard : bool
early_stopping_criterion : Sequence[str]
grad_clip : float
grad_clip_type : float
grad_noise : bool
keep_nbest_models : int | List[int]
log_interval : int | None
max_epoch : int
nbest_averaging_interval : int
ngpu : int
no_forward_run : bool
output_dir : Path | str
patience : int | None
resume : bool
save_strategy : str
seed : int
sharded_ddp : bool
train_dtype : str
unused_parameters : bool
use_adapter : bool
use_amp : bool
use_matplotlib : bool
use_tensorboard : bool
use_wandb : bool
val_scheduler_criterion : Sequence[str]
wandb_model_log_interval : int