Source code for espnet2.asr.encoder.e_branchformer_encoder

# Copyright 2022 Kwangyoun Kim (ASAPP inc.)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""E-Branchformer encoder definition.
Reference:
    Kwangyoun Kim, Felix Wu, Yifan Peng, Jing Pan,
    Prashant Sridhar, Kyu J. Han, Shinji Watanabe,
    "E-Branchformer: Branchformer with Enhanced merging
    for speech recognition," in SLT 2022.
"""

import logging
from typing import Optional, Tuple

import torch
from typeguard import typechecked

from espnet2.asr.ctc import CTC
from espnet2.asr.encoder.abs_encoder import AbsEncoder
from espnet2.asr.layers.cgmlp import ConvolutionalGatingMLP
from espnet2.asr.layers.fastformer import FastSelfAttention
from espnet.nets.pytorch_backend.nets_utils import get_activation, make_pad_mask
from espnet.nets.pytorch_backend.transformer.attention import (  # noqa: H301
    LegacyRelPositionMultiHeadedAttention,
    MultiHeadedAttention,
    RelPositionMultiHeadedAttention,
)
from espnet.nets.pytorch_backend.transformer.embedding import (  # noqa: H301
    LegacyRelPositionalEncoding,
    PositionalEncoding,
    RelPositionalEncoding,
    ScaledPositionalEncoding,
)
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,
)
from espnet.nets.pytorch_backend.transformer.repeat import repeat
from espnet.nets.pytorch_backend.transformer.subsampling import (
    Conv1dSubsampling1,
    Conv1dSubsampling2,
    Conv1dSubsampling3,
    Conv2dSubsampling,
    Conv2dSubsampling1,
    Conv2dSubsampling2,
    Conv2dSubsampling6,
    Conv2dSubsampling8,
    TooShortUttError,
    check_short_utt,
)


[docs]class EBranchformerEncoderLayer(torch.nn.Module): """E-Branchformer encoder layer module. Args: size (int): model dimension attn: standard self-attention or efficient attention cgmlp: ConvolutionalGatingMLP feed_forward: feed-forward module, optional feed_forward: macaron-style feed-forward module, optional dropout_rate (float): dropout probability merge_conv_kernel (int): kernel size of the depth-wise conv in merge module """ def __init__( self, size: int, attn: torch.nn.Module, cgmlp: torch.nn.Module, feed_forward: Optional[torch.nn.Module], feed_forward_macaron: Optional[torch.nn.Module], dropout_rate: float, merge_conv_kernel: int = 3, ): super().__init__() self.size = size self.attn = attn self.cgmlp = cgmlp self.feed_forward = feed_forward self.feed_forward_macaron = feed_forward_macaron self.ff_scale = 1.0 if self.feed_forward is not None: self.norm_ff = LayerNorm(size) if self.feed_forward_macaron is not None: self.ff_scale = 0.5 self.norm_ff_macaron = LayerNorm(size) self.norm_mha = LayerNorm(size) # for the MHA module self.norm_mlp = LayerNorm(size) # for the MLP module self.norm_final = LayerNorm(size) # for the final output of the block self.dropout = torch.nn.Dropout(dropout_rate) self.depthwise_conv_fusion = torch.nn.Conv1d( size + size, size + size, kernel_size=merge_conv_kernel, stride=1, padding=(merge_conv_kernel - 1) // 2, groups=size + size, bias=True, ) self.merge_proj = torch.nn.Linear(size + size, size)
[docs] def forward(self, x_input, mask, cache=None): """Compute encoded features. Args: x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb. - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. - w/o pos emb: Tensor (#batch, time, size). mask (torch.Tensor): Mask tensor for the input (#batch, 1, time). cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time). """ if cache is not None: raise NotImplementedError("cache is not None, which is not tested") if isinstance(x_input, tuple): x, pos_emb = x_input[0], x_input[1] else: x, pos_emb = x_input, None if self.feed_forward_macaron is not None: residual = x x = self.norm_ff_macaron(x) x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x)) # Two branches x1 = x x2 = x # Branch 1: multi-headed attention module x1 = self.norm_mha(x1) if isinstance(self.attn, FastSelfAttention): x_att = self.attn(x1, mask) else: if pos_emb is not None: x_att = self.attn(x1, x1, x1, pos_emb, mask) else: x_att = self.attn(x1, x1, x1, mask) x1 = self.dropout(x_att) # Branch 2: convolutional gating mlp x2 = self.norm_mlp(x2) if pos_emb is not None: x2 = (x2, pos_emb) x2 = self.cgmlp(x2, mask) if isinstance(x2, tuple): x2 = x2[0] x2 = self.dropout(x2) # Merge two branches x_concat = torch.cat([x1, x2], dim=-1) x_tmp = x_concat.transpose(1, 2) x_tmp = self.depthwise_conv_fusion(x_tmp) x_tmp = x_tmp.transpose(1, 2) x = x + self.dropout(self.merge_proj(x_concat + x_tmp)) if self.feed_forward is not None: # feed forward module residual = x x = self.norm_ff(x) x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) x = self.norm_final(x) if pos_emb is not None: return (x, pos_emb), mask return x, mask
[docs]class EBranchformerEncoder(AbsEncoder): """E-Branchformer encoder module.""" @typechecked def __init__( self, input_size: int, output_size: int = 256, attention_heads: int = 4, attention_layer_type: str = "rel_selfattn", pos_enc_layer_type: str = "rel_pos", rel_pos_type: str = "latest", cgmlp_linear_units: int = 2048, cgmlp_conv_kernel: int = 31, use_linear_after_conv: bool = False, gate_activation: str = "identity", num_blocks: int = 12, dropout_rate: float = 0.1, positional_dropout_rate: float = 0.1, attention_dropout_rate: float = 0.0, input_layer: Optional[str] = "conv2d", zero_triu: bool = False, padding_idx: int = -1, layer_drop_rate: float = 0.0, max_pos_emb_len: int = 5000, use_ffn: bool = False, macaron_ffn: bool = False, ffn_activation_type: str = "swish", linear_units: int = 2048, positionwise_layer_type: str = "linear", merge_conv_kernel: int = 3, interctc_layer_idx=None, interctc_use_conditioning: bool = False, ): super().__init__() self._output_size = output_size if rel_pos_type == "legacy": if pos_enc_layer_type == "rel_pos": pos_enc_layer_type = "legacy_rel_pos" if attention_layer_type == "rel_selfattn": attention_layer_type = "legacy_rel_selfattn" elif rel_pos_type == "latest": assert attention_layer_type != "legacy_rel_selfattn" assert pos_enc_layer_type != "legacy_rel_pos" else: raise ValueError("unknown rel_pos_type: " + rel_pos_type) if pos_enc_layer_type == "abs_pos": pos_enc_class = PositionalEncoding elif pos_enc_layer_type == "scaled_abs_pos": pos_enc_class = ScaledPositionalEncoding elif pos_enc_layer_type == "rel_pos": assert attention_layer_type == "rel_selfattn" pos_enc_class = RelPositionalEncoding elif pos_enc_layer_type == "legacy_rel_pos": assert attention_layer_type == "legacy_rel_selfattn" pos_enc_class = LegacyRelPositionalEncoding logging.warning( "Using legacy_rel_pos and it will be deprecated in the future." ) else: raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) if input_layer == "linear": self.embed = torch.nn.Sequential( torch.nn.Linear(input_size, output_size), torch.nn.LayerNorm(output_size), torch.nn.Dropout(dropout_rate), pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer == "conv1d1": self.embed = Conv1dSubsampling1( input_size, output_size, dropout_rate, pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer == "conv1d2": self.embed = Conv1dSubsampling2( input_size, output_size, dropout_rate, pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer == "conv1d3": self.embed = Conv1dSubsampling3( input_size, output_size, dropout_rate, pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer == "conv2d": self.embed = Conv2dSubsampling( input_size, output_size, dropout_rate, pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer == "conv2d1": self.embed = Conv2dSubsampling1( input_size, output_size, dropout_rate, pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer == "conv2d2": self.embed = Conv2dSubsampling2( input_size, output_size, dropout_rate, pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer == "conv2d6": self.embed = Conv2dSubsampling6( input_size, output_size, dropout_rate, pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer == "conv2d8": self.embed = Conv2dSubsampling8( input_size, output_size, dropout_rate, pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer == "embed": self.embed = torch.nn.Sequential( torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx), pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif isinstance(input_layer, torch.nn.Module): self.embed = torch.nn.Sequential( input_layer, pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len), ) elif input_layer is None: if input_size == output_size: self.embed = torch.nn.Sequential( pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len) ) else: self.embed = torch.nn.Linear(input_size, output_size) else: raise ValueError("unknown input_layer: " + input_layer) activation = get_activation(ffn_activation_type) if positionwise_layer_type == "linear": positionwise_layer = PositionwiseFeedForward positionwise_layer_args = ( output_size, linear_units, dropout_rate, activation, ) elif positionwise_layer_type is None: logging.warning("no macaron ffn") else: raise ValueError("Support only linear.") if attention_layer_type == "selfattn": encoder_selfattn_layer = MultiHeadedAttention encoder_selfattn_layer_args = ( attention_heads, output_size, attention_dropout_rate, ) elif attention_layer_type == "legacy_rel_selfattn": assert pos_enc_layer_type == "legacy_rel_pos" encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention encoder_selfattn_layer_args = ( attention_heads, output_size, attention_dropout_rate, ) logging.warning( "Using legacy_rel_selfattn and it will be deprecated in the future." ) elif attention_layer_type == "rel_selfattn": assert pos_enc_layer_type == "rel_pos" encoder_selfattn_layer = RelPositionMultiHeadedAttention encoder_selfattn_layer_args = ( attention_heads, output_size, attention_dropout_rate, zero_triu, ) elif attention_layer_type == "fast_selfattn": assert pos_enc_layer_type in ["abs_pos", "scaled_abs_pos"] encoder_selfattn_layer = FastSelfAttention encoder_selfattn_layer_args = ( output_size, attention_heads, attention_dropout_rate, ) else: raise ValueError("unknown encoder_attn_layer: " + attention_layer_type) cgmlp_layer = ConvolutionalGatingMLP cgmlp_layer_args = ( output_size, cgmlp_linear_units, cgmlp_conv_kernel, dropout_rate, use_linear_after_conv, gate_activation, ) self.encoders = repeat( num_blocks, lambda lnum: EBranchformerEncoderLayer( output_size, encoder_selfattn_layer(*encoder_selfattn_layer_args), cgmlp_layer(*cgmlp_layer_args), positionwise_layer(*positionwise_layer_args) if use_ffn else None, ( positionwise_layer(*positionwise_layer_args) if use_ffn and macaron_ffn else None ), dropout_rate, merge_conv_kernel, ), layer_drop_rate, ) self.after_norm = LayerNorm(output_size) if interctc_layer_idx is None: interctc_layer_idx = [] self.interctc_layer_idx = interctc_layer_idx if len(interctc_layer_idx) > 0: assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks self.interctc_use_conditioning = interctc_use_conditioning self.conditioning_layer = None
[docs] def output_size(self) -> int: return self._output_size
[docs] def forward( self, xs_pad: torch.Tensor, ilens: torch.Tensor, prev_states: torch.Tensor = None, ctc: CTC = None, max_layer: int = None, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: """Calculate forward propagation. Args: xs_pad (torch.Tensor): Input tensor (#batch, L, input_size). ilens (torch.Tensor): Input length (#batch). prev_states (torch.Tensor): Not to be used now. ctc (CTC): Intermediate CTC module. max_layer (int): Layer depth below which InterCTC is applied. Returns: torch.Tensor: Output tensor (#batch, L, output_size). torch.Tensor: Output length (#batch). torch.Tensor: Not to be used now. """ masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) if ( isinstance(self.embed, Conv2dSubsampling) or isinstance(self.embed, Conv1dSubsampling1) or isinstance(self.embed, Conv1dSubsampling2) or isinstance(self.embed, Conv1dSubsampling3) or isinstance(self.embed, Conv2dSubsampling1) or isinstance(self.embed, Conv2dSubsampling2) or isinstance(self.embed, Conv2dSubsampling6) or isinstance(self.embed, Conv2dSubsampling8) ): short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1)) if short_status: raise TooShortUttError( f"has {xs_pad.size(1)} frames and is too short for subsampling " + f"(it needs more than {limit_size} frames), return empty results", xs_pad.size(1), limit_size, ) xs_pad, masks = self.embed(xs_pad, masks) elif self.embed is not None: xs_pad = self.embed(xs_pad) intermediate_outs = [] if len(self.interctc_layer_idx) == 0: if max_layer is not None and 0 <= max_layer < len(self.encoders): for layer_idx, encoder_layer in enumerate(self.encoders): xs_pad, masks = encoder_layer(xs_pad, masks) if layer_idx >= max_layer: break else: xs_pad, masks = self.encoders(xs_pad, masks) else: for layer_idx, encoder_layer in enumerate(self.encoders): xs_pad, masks = encoder_layer(xs_pad, masks) if layer_idx + 1 in self.interctc_layer_idx: encoder_out = xs_pad if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] intermediate_outs.append((layer_idx + 1, encoder_out)) if self.interctc_use_conditioning: ctc_out = ctc.softmax(encoder_out) if isinstance(xs_pad, tuple): xs_pad = list(xs_pad) xs_pad[0] = xs_pad[0] + self.conditioning_layer(ctc_out) xs_pad = tuple(xs_pad) else: xs_pad = xs_pad + self.conditioning_layer(ctc_out) if isinstance(xs_pad, tuple): xs_pad = xs_pad[0] xs_pad = self.after_norm(xs_pad) olens = masks.squeeze(1).sum(1) if len(intermediate_outs) > 0: return (xs_pad, intermediate_outs), olens, None return xs_pad, olens, None