#!/usr/bin/env python3
# 2021, University of Stuttgart; Pavel Denisov
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Length adaptor PostEncoder."""
from typing import Optional, Tuple
import torch
from typeguard import check_argument_types
from espnet2.asr.postencoder.abs_postencoder import AbsPostEncoder
from espnet.nets.pytorch_backend.transformer.subsampling import TooShortUttError
[docs]class LengthAdaptorPostEncoder(AbsPostEncoder):
"""Length Adaptor PostEncoder."""
def __init__(
self,
input_size: int,
length_adaptor_n_layers: int = 0,
input_layer: Optional[str] = None,
output_size: Optional[int] = None,
dropout_rate: float = 0.1,
return_int_enc: bool = False,
):
"""Initialize the module."""
assert check_argument_types()
super().__init__()
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
)
self.out_sz = output_size
else:
self.embed = None
self.out_sz = input_size
# Length Adaptor as in https://aclanthology.org/2021.acl-long.68.pdf
if length_adaptor_n_layers > 0:
length_adaptor_layers = []
for _ in range(length_adaptor_n_layers):
length_adaptor_layers.append(
torch.nn.Conv1d(self.out_sz, self.out_sz, 2, 2)
)
length_adaptor_layers.append(torch.nn.ReLU())
else:
length_adaptor_layers = [torch.nn.Identity()]
self.length_adaptor = torch.nn.Sequential(*length_adaptor_layers)
self.length_adaptor_ratio = 2**length_adaptor_n_layers
self.return_int_enc = return_int_enc
[docs] def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward."""
if input.size(1) < self.length_adaptor_ratio:
raise TooShortUttError(
f"has {input.size(1)} frames and is too short for subsampling "
+ f"(it needs at least {self.length_adaptor_ratio} frames), "
+ "return empty results",
input.size(1),
self.length_adaptor_ratio,
)
if self.embed is not None:
input = self.embed(input)
input = input.permute(0, 2, 1)
input = self.length_adaptor(input)
input = input.permute(0, 2, 1)
input_lengths = (
input_lengths.float().div(self.length_adaptor_ratio).floor().long()
)
return input, input_lengths
[docs] def output_size(self) -> int:
"""Get the output size."""
return self.out_sz