Source code for espnet2.enh.layers.ncsnpp_utils.normalization

# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Normalization layers."""
import functools

import torch
import torch.nn as nn


[docs]def get_normalization(config, conditional=False): """Obtain normalization modules from the config file.""" norm = config.model.normalization if conditional: if norm == "InstanceNorm++": return functools.partial( ConditionalInstanceNorm2dPlus, num_classes=config.model.num_classes ) else: raise NotImplementedError(f"{norm} not implemented yet.") else: if norm == "InstanceNorm": return nn.InstanceNorm2d elif norm == "InstanceNorm++": return InstanceNorm2dPlus elif norm == "VarianceNorm": return VarianceNorm2d elif norm == "GroupNorm": return nn.GroupNorm else: raise ValueError("Unknown normalization: %s" % norm)
[docs]class ConditionalBatchNorm2d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.bn = nn.BatchNorm2d(num_features, affine=False) if self.bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[ :, :num_features ].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_()
[docs] def forward(self, x, y): out = self.bn(x) if self.bias: gamma, beta = self.embed(y).chunk(2, dim=1) out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view( -1, self.num_features, 1, 1 ) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * out return out
[docs]class ConditionalInstanceNorm2d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm2d( num_features, affine=False, track_running_stats=False ) if bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[ :, :num_features ].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_()
[docs] def forward(self, x, y): h = self.instance_norm(x) if self.bias: gamma, beta = self.embed(y).chunk(2, dim=-1) out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view( -1, self.num_features, 1, 1 ) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * h return out
[docs]class ConditionalVarianceNorm2d(nn.Module): def __init__(self, num_features, num_classes, bias=False): super().__init__() self.num_features = num_features self.bias = bias self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.normal_(1, 0.02)
[docs] def forward(self, x, y): vars = torch.var(x, dim=(2, 3), keepdim=True) h = x / torch.sqrt(vars + 1e-5) gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * h return out
[docs]class VarianceNorm2d(nn.Module): def __init__(self, num_features, bias=False): super().__init__() self.num_features = num_features self.bias = bias self.alpha = nn.Parameter(torch.zeros(num_features)) self.alpha.data.normal_(1, 0.02)
[docs] def forward(self, x): vars = torch.var(x, dim=(2, 3), keepdim=True) h = x / torch.sqrt(vars + 1e-5) out = self.alpha.view(-1, self.num_features, 1, 1) * h return out
[docs]class ConditionalNoneNorm2d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias if bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[ :, :num_features ].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_()
[docs] def forward(self, x, y): if self.bias: gamma, beta = self.embed(y).chunk(2, dim=-1) out = gamma.view(-1, self.num_features, 1, 1) * x + beta.view( -1, self.num_features, 1, 1 ) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * x return out
[docs]class NoneNorm2d(nn.Module): def __init__(self, num_features, bias=True): super().__init__()
[docs] def forward(self, x): return x
[docs]class InstanceNorm2dPlus(nn.Module): def __init__(self, num_features, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm2d( num_features, affine=False, track_running_stats=False ) self.alpha = nn.Parameter(torch.zeros(num_features)) self.gamma = nn.Parameter(torch.zeros(num_features)) self.alpha.data.normal_(1, 0.02) self.gamma.data.normal_(1, 0.02) if bias: self.beta = nn.Parameter(torch.zeros(num_features))
[docs] def forward(self, x): means = torch.mean(x, dim=(2, 3)) m = torch.mean(means, dim=-1, keepdim=True) v = torch.var(means, dim=-1, keepdim=True) means = (means - m) / (torch.sqrt(v + 1e-5)) h = self.instance_norm(x) if self.bias: h = h + means[..., None, None] * self.alpha[..., None, None] out = self.gamma.view(-1, self.num_features, 1, 1) * h + self.beta.view( -1, self.num_features, 1, 1 ) else: h = h + means[..., None, None] * self.alpha[..., None, None] out = self.gamma.view(-1, self.num_features, 1, 1) * h return out
[docs]class ConditionalInstanceNorm2dPlus(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm2d( num_features, affine=False, track_running_stats=False ) if bias: self.embed = nn.Embedding(num_classes, num_features * 3) self.embed.weight.data[:, : 2 * num_features].normal_( 1, 0.02 ) # Initialise scale at N(1, 0.02) self.embed.weight.data[ :, 2 * num_features : ].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, 2 * num_features) self.embed.weight.data.normal_(1, 0.02)
[docs] def forward(self, x, y): means = torch.mean(x, dim=(2, 3)) m = torch.mean(means, dim=-1, keepdim=True) v = torch.var(means, dim=-1, keepdim=True) means = (means - m) / (torch.sqrt(v + 1e-5)) h = self.instance_norm(x) if self.bias: gamma, alpha, beta = self.embed(y).chunk(3, dim=-1) h = h + means[..., None, None] * alpha[..., None, None] out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view( -1, self.num_features, 1, 1 ) else: gamma, alpha = self.embed(y).chunk(2, dim=-1) h = h + means[..., None, None] * alpha[..., None, None] out = gamma.view(-1, self.num_features, 1, 1) * h return out