Source code for espnet2.tasks.tts2

"""Text-to-speech task."""

import argparse
import logging
from pathlib import Path
from typing import Callable, Collection, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import yaml
from typeguard import typechecked

from espnet2.tasks.abs_task import AbsTask

# TTS continuous feature extraction operators
from espnet2.tasks.tts import (
from espnet2.text.phoneme_tokenizer import g2p_choices
from espnet2.train.class_choices import ClassChoices
from espnet2.train.collate_fn import CommonCollateFn
from espnet2.train.preprocessor import CommonPreprocessor
from espnet2.train.trainer import Trainer
from espnet2.tts2.abs_tts2 import AbsTTS2
from espnet2.tts2.espnet_model import ESPnetTTS2Model
from espnet2.tts2.fastspeech2 import FastSpeech2Discrete
from espnet2.tts2.feats_extract.abs_feats_extract import AbsFeatsExtractDiscrete
from espnet2.tts2.feats_extract.identity import IdentityFeatureExtract
from espnet2.tts.utils import ParallelWaveGANPretrainedVocoder
from espnet2.utils.get_default_kwargs import get_default_kwargs
from espnet2.utils.griffin_lim import Spectrogram2Waveform
from espnet2.utils.nested_dict_action import NestedDictAction
from espnet2.utils.types import int_or_none, str2bool, str_or_none

discrete_feats_extractor_choices = ClassChoices(
tts_choices = ClassChoices(

[docs]class TTS2Task(AbsTask): # If you need more than one optimizers, change this value num_optimizers: int = 1 # Add variable objects configurations class_choices_list = [ # --discrete_feats_extractor and --discrete_feats_extractor_conf discrete_feats_extractor_choices, # --tts and --tts_conf tts_choices, # --pitch_extract and --pitch_extract_conf pitch_extractor_choices, # --pitch_normalize and --pitch_normalize_conf pitch_normalize_choices, # --energy_extract and --energy_extract_conf energy_extractor_choices, # --energy_normalize and --energy_normalize_conf energy_normalize_choices, ] # If you need to modify train() or eval() procedures, change Trainer class here trainer = Trainer
[docs] @classmethod @typechecked def add_task_arguments(cls, parser: argparse.ArgumentParser): # NOTE(kamo): Use '_' instead of '-' to avoid confusion group = parser.add_argument_group(description="Task related") # NOTE(kamo): add_arguments(..., required=True) can't be used # to provide --print_config mode. Instead of it, do as required = parser.get_default("required") required += ["src_token_list", "tgt_token_list"] group.add_argument( "--src_token_list", type=str_or_none, default=None, help="A text mapping int-id to token", ) group.add_argument( "--tgt_token_list", type=str_or_none, default=None, help="A text mapping int-id to target speech token", ) group.add_argument( "--model_conf", action=NestedDictAction, default=get_default_kwargs(ESPnetTTS2Model), help="The keyword arguments for model class.", ) group = parser.add_argument_group(description="Preprocess related") group.add_argument( "--use_preprocessor", type=str2bool, default=True, help="Apply preprocessing to data or not", ) group.add_argument( "--src_token_type", type=str, default="phn", choices=["bpe", "char", "word", "phn"], help="The text will be tokenized in the specified level token", ) group.add_argument( "--bpemodel", type=str_or_none, default=None, help="The model file of sentencepiece", ) parser.add_argument( "--non_linguistic_symbols", type=str_or_none, default=None, help="non_linguistic_symbols file path", ) parser.add_argument( "--cleaner", type=str_or_none, choices=[None, "tacotron", "jaconv", "vietnamese", "korean_cleaner"], default=None, help="Apply text cleaning", ) parser.add_argument( "--g2p", type=str_or_none, choices=g2p_choices, default=None, help="Specify g2p method if --token_type=phn", ) for class_choices in cls.class_choices_list: # Append --<name> and --<name>_conf. # e.g. --encoder and --encoder_conf class_choices.add_arguments(group)
[docs] @classmethod @typechecked def build_collate_fn(cls, args: argparse.Namespace, train: bool) -> Callable[ [Collection[Tuple[str, Dict[str, np.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]], ]: return CommonCollateFn( float_pad_value=0.0, int_pad_value=0, not_sequence=["spembs", "sids", "lids"], )
[docs] @classmethod @typechecked def build_preprocess_fn( cls, args: argparse.Namespace, train: bool ) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]: if args.use_preprocessor: retval = CommonPreprocessor( train=train, token_type=args.src_token_type, token_list=args.src_token_list, bpemodel=args.bpemodel, non_linguistic_symbols=args.non_linguistic_symbols, text_cleaner=args.cleaner, g2p_type=args.g2p, ) else: retval = None return retval
[docs] @classmethod def required_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: # Note (Jinchuan): We need both speech and discrete_speech # speech is for on-the-fly feature extraction like pitch & energy # discrete_speech is mainly for the predicting target. # We can later make the speech optional so that the non-text info # can be injected though reference speech clips. if not inference: retval = ("text", "speech", "discrete_speech") else: # Inference mode retval = ("text",) return retval
[docs] @classmethod def optional_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: if not inference: retval = ( "spembs", "durations", "pitch", "energy", "sids", "lids", ) else: # Inference mode retval = ( "spembs", "speech", "durations", "pitch", "energy", "sids", "lids", ) return retval
[docs] @classmethod @typechecked def build_model(cls, args: argparse.Namespace) -> ESPnetTTS2Model: if isinstance(args.src_token_list, str): with open(args.src_token_list, encoding="utf-8") as f: src_token_list = [line[0] + line[1:].rstrip() for line in f] # "args" is saved as it is in a yaml file by BaseTask.main(). # Overwriting token_list to keep it as "portable". args.src_token_list = src_token_list.copy() elif isinstance(args.src_token_list, (tuple, list)): src_token_list = args.src_token_list.copy() else: raise RuntimeError("token_list must be str or dict") if isinstance(args.tgt_token_list, str): with open(args.tgt_token_list, encoding="utf-8") as f: tgt_token_list = [line[0] + line[1:].rstrip() for line in f] # "args" is saved as it is in a yaml file by BaseTask.main(). # Overwriting token_list to keep it as "portable". args.tgt_token_list = tgt_token_list.copy() elif isinstance(args.tgt_token_list, (tuple, list)): tgt_token_list = args.tgt_token_list.copy() else: raise RuntimeError("tgt_token_list must be str or dict") vocab_size = len(src_token_list)"Vocabulary size: {vocab_size}") tgt_vocab_size = len(tgt_token_list)"Target Vocabulary size: {tgt_vocab_size}") # 1. discrete feature extraction discrete_feats_extract_class = discrete_feats_extractor_choices.get_class( args.discrete_feats_extract ) discrete_feats_extract = discrete_feats_extract_class( **args.discrete_feats_extract_conf ) # 3. TTS tts_class = tts_choices.get_class(args.tts) tts = tts_class(idim=vocab_size, odim=tgt_vocab_size, **args.tts_conf) # 4. Extra components pitch_extract = None energy_extract = None pitch_normalize = None energy_normalize = None if getattr(args, "pitch_extract", None) is not None: pitch_extract_class = pitch_extractor_choices.get_class(args.pitch_extract) if args.pitch_extract_conf.get("reduction_factor", None) is not None: assert args.pitch_extract_conf.get( "reduction_factor", None ) == args.tts_conf.get("reduction_factor", 1) else: args.pitch_extract_conf["reduction_factor"] = args.tts_conf.get( "reduction_factor", 1 ) pitch_extract = pitch_extract_class(**args.pitch_extract_conf) if getattr(args, "energy_extract", None) is not None: if args.energy_extract_conf.get("reduction_factor", None) is not None: assert args.energy_extract_conf.get( "reduction_factor", None ) == args.tts_conf.get("reduction_factor", 1) else: args.energy_extract_conf["reduction_factor"] = args.tts_conf.get( "reduction_factor", 1 ) energy_extract_class = energy_extractor_choices.get_class( args.energy_extract ) energy_extract = energy_extract_class(**args.energy_extract_conf) if getattr(args, "pitch_normalize", None) is not None: pitch_normalize_class = pitch_normalize_choices.get_class( args.pitch_normalize ) pitch_normalize = pitch_normalize_class(**args.pitch_normalize_conf) if getattr(args, "energy_normalize", None) is not None: energy_normalize_class = energy_normalize_choices.get_class( args.energy_normalize ) energy_normalize = energy_normalize_class(**args.energy_normalize_conf) # 5. Build model model = ESPnetTTS2Model( discrete_feats_extract=discrete_feats_extract, pitch_extract=pitch_extract, energy_extract=energy_extract, pitch_normalize=pitch_normalize, energy_normalize=energy_normalize, tts=tts, **args.model_conf, ) return model
[docs] @classmethod def build_vocoder_from_file( cls, vocoder_config_file: Union[Path, str] = None, vocoder_file: Union[Path, str] = None, model: Optional[ESPnetTTS2Model] = None, device: str = "cpu", ): # Build vocoder assert vocoder_file is not None, "TTS2 model must have a vocoder." if str(vocoder_file).endswith(".pkl"): # If the extension is ".pkl", the model is trained with parallel_wavegan vocoder = ParallelWaveGANPretrainedVocoder( vocoder_file, vocoder_config_file ) return else: raise ValueError(f"{vocoder_file} is not supported format.")