espnet2.tasks.lid.LIDTask
espnet2.tasks.lid.LIDTask
class espnet2.tasks.lid.LIDTask
Bases: AbsTask
classmethod add_task_arguments(parser: ArgumentParser)
classmethod build_collate_fn(args: Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, ndarray]]]], Tuple[List[str], Dict[str, Tensor]]]
Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader
>>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
classmethod build_preprocess_fn(args: Namespace, train: bool) → Callable[[str, Dict[str, array]], Dict[str, ndarray]] | None
num_optimizers : int = 1
classmethod optional_data_names(train: bool = True, inference: bool = False) → Tuple[str, ...]
Define the optional names by Task
This function is used by
cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel
>>> class Model(AbsESPnetModel):
... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
classmethod required_data_names(train: bool = True, inference: bool = False) → Tuple[str, ...]
Define the required names by Task
This function is used by
cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel
>>> class Model(AbsESPnetModel):
... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')