espnet.nets.pytorch_backend.transducer.error_calculator.ErrorCalculator
Less than 1 minute
espnet.nets.pytorch_backend.transducer.error_calculator.ErrorCalculator
class espnet.nets.pytorch_backend.transducer.error_calculator.ErrorCalculator(decoder: RNNDecoder | CustomDecoder, joint_network: JointNetwork, token_list: List[int], sym_space: str, sym_blank: str, report_cer: bool = False, report_wer: bool = False)
Bases: object
CER and WER computation for Transducer model.
- Parameters:
- decoder – Decoder module.
- joint_network – Joint network module.
- token_list – Set of unique labels.
- sym_space – Space symbol.
- sym_blank – Blank symbol.
- report_cer – Whether to compute CER.
- report_wer – Whether to compute WER.
Construct an ErrorCalculator object for Transducer model.
calculate_cer(hyps: Tensor, refs: Tensor) → float
Calculate sentence-level CER score.
- Parameters:
- hyps – Hypotheses sequences. (B, L)
- refs – References sequences. (B, L)
- Returns: Average sentence-level CER score.
calculate_wer(hyps: Tensor, refs: Tensor) → float
Calculate sentence-level WER score.
- Parameters:
- hyps – Hypotheses sequences. (B, L)
- refs – References sequences. (B, L)
- Returns: Average sentence-level WER score.
convert_to_char(hyps: Tensor, refs: Tensor) → Tuple[List, List]
Convert label ID sequences to character.
- Parameters:
- hyps – Hypotheses sequences. (B, L)
- refs – References sequences. (B, L)
- Returns: Character list of hypotheses. char_hyps: Character list of references.
- Return type: char_hyps