espnet.nets.pytorch_backend.transformer.mask.subsequent_mask
Less than 1 minute
espnet.nets.pytorch_backend.transformer.mask.subsequent_mask
espnet.nets.pytorch_backend.transformer.mask.subsequent_mask(size, device='cpu', dtype=torch.bool)
Create mask for subsequent steps (size, size).
- Parameters:
- size (int) – size of mask
- device (str) – “cpu” or “cuda” or torch.Tensor.device
- dtype (torch.dtype) – result dtype
- Return type: torch.Tensor
>>> subsequent_mask(3)
[[1, 0, 0],
[1, 1, 0],
[1, 1, 1]]