espnet2.enh.layers.dc_crn.GluConvTranspose2d
Less than 1 minute
espnet2.enh.layers.dc_crn.GluConvTranspose2d
class espnet2.enh.layers.dc_crn.GluConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding=0, output_padding=(0, 0))
Bases: Module
ConvTranspose2d with Gated Linear Units (GLU).
Input and output shapes are the same as regular ConvTranspose2d layers.
Reference: Section III-B in [1]
- Parameters:
- in_channels (int) – number of input channels
- out_channels (int) – number of output channels
- kernel_size (int/tuple) – kernel size in ConvTranspose2d
- stride (int/tuple) – stride size in ConvTranspose2d
- padding (int/tuple) – padding size in ConvTranspose2d
- output_padding (int/tuple) – Additional size added to one side of each dimension in the output shape
forward(x)
DeconvGLU forward.
- Parameters:x (torch.Tensor) – (B, C_in, H_in, W_in)
- Returns: (B, C_out, H_out, W_out)
- Return type: out (torch.Tensor)