espnet2.enh.diffusion.sdes.OUVESDE
espnet2.enh.diffusion.sdes.OUVESDE
class espnet2.enh.diffusion.sdes.OUVESDE(theta=1.5, sigma_min=0.05, sigma_max=0.5, N=1000, **ignored_kwargs)
Bases: SDE
Construct an Ornstein-Uhlenbeck Variance Exploding SDE.
Note that the “steady-state mean” y is not provided at construction, but must rather be given as an argument to the methods which require it (e.g., sde or marginal_prob).
dx = -theta (y-x) dt + sigma(t) dw
with
sigma(t) = sigma_min (sigma_max/sigma_min)^t * sqrt(2 log(sigma_max/sigma_min))
- Parameters:
- theta – stiffness parameter.
- sigma_min – smallest sigma.
- sigma_max – largest sigma.
- N – number of discretization steps
property T
End time of the SDE.
copy()
marginal_prob(x0, t, y)
Parameters to determine the marginal distribution of
the SDE, $p_t(x|args)$.
prior_logp(z)
Compute log-density of the prior distribution.
Useful for computing the log-likelihood via probability flow ODE.
- Parameters:z – latent code
- Returns: log probability density
prior_sampling(shape, y)
Generate one sample from the prior distribution,
$p_T(x|args)$ with shape shape.
sde(x, t, y)